Simplify the following radicals:
1. $\sqrt{125}$
2. $\sqrt{54}$
3. $\sqrt{80}$

Simplifying Radicals with Coefficients

When we put a coefficient in front of the radical, we are *multiplying* it by our answer after we simplify.

If we take Warm up question #1 and put a 6 in front of it, it looks like this:

\[
6 \sqrt{125} \\
\downarrow \\
6 \cdot \sqrt{25} \sqrt{5} \\
\downarrow \\
6 \cdot 5 \sqrt{5} \\
\downarrow \\
30 \sqrt{5}
\]

We keep bringing down each piece and multiply at the end.

1. $2 \sqrt{18}$
2. $-4 \sqrt{12}$
3. $6 \sqrt{72}$
Examples

1. $\frac{1}{2}\sqrt{20}$
2. $10\sqrt{32}$
3. $-2\sqrt{48}$

4. $-\sqrt{44}$
5. $3\sqrt{13}$
6. $5\sqrt{500}$

Practice

7. $3\sqrt{250}$
8. $-5\sqrt{24}$
9. $\frac{4}{5}\sqrt{50}$

10. $3\sqrt{27}$
11. $-\sqrt{45}$
12. $12\sqrt{60}$
Adding / Subtracting Radicals

1) Simplify $\sqrt{50}$

2) Simplify $\sqrt{90}$

Important Points to know:
- Make sure the radicals are in ___________ _______ before you add or subtract.
- In order to add or subtract radicals, the number inside the radicals must be the ________. This is called the ____________.
- When the radicands are the same, then, you can add or subtract only the numbers in ________ of the radicals (______________). The radicands are treated kind of like variables.

Already-Simplified Radicals:

Example 1: $\sqrt{2} + \sqrt{2}$

$x + x$

$1\sqrt{2} + 1\sqrt{2}$

$1x + 1x$

$= 2\sqrt{2}$

$= 2x$

Example 2: $2\sqrt{3} + 4\sqrt{3}$

Example 3: $6\sqrt{5} - 4\sqrt{5}$

Practice

1) $7\sqrt{6} + 2\sqrt{6}$

2) $\sqrt{13} + 5\sqrt{13}$

3) $4\sqrt{11} - \sqrt{11}$

4) $2\sqrt{3} - 6\sqrt{3}$

5) $-10\sqrt{2} + 3\sqrt{2}$

6) $-8\sqrt{15} - 9\sqrt{15}$

NOTE:
- These numbers can be “added” because the radicands are the same.
- However, only the numbers in front, which are 1’s, are added. Nothing happens to the $\sqrt{2}$. It is almost like an x.
Un-Simplified Radicals:

When the radicals are NOT in simplified form, we must use the method learned the last couple of days to simplify them!

Example 4: $\sqrt{3} + \sqrt{27}$

\[
\begin{align*}
\sqrt{3} + \sqrt{27} & = \\
\sqrt{3} + \sqrt{9 \sqrt{3}} & = \\
\sqrt{3} + 3\sqrt{3} & =
\end{align*}
\]

NOTE: The $\sqrt{3}$ is simplified already, but the $\sqrt{27}$ must still be simplified.

Example 5: $4\sqrt{2} + 3\sqrt{50}$

Example 6: $3\sqrt{20} - 2\sqrt{5}$

Practice

1) $2\sqrt{3} + 4\sqrt{12}$
2) $3\sqrt{5} - 2\sqrt{45}$
3) $7\sqrt{5} - \sqrt{15}$

4) Find the perimeter of a rectangle whose length is $3\sqrt{5}$ and width is $2\sqrt{7}$. [Draw a picture!]
Perform the indicated operation (Add or Subtract):

1) \(\sqrt{3} + 8\sqrt{3} \)
2) \(3\sqrt{5} - 7\sqrt{5} \)
3) \(\sqrt{11} - \sqrt{11} \)

4) The sum of \(\sqrt{12} \) and \(5\sqrt{3} \) is?
5) Find the difference of \(12\sqrt{11} \) and \(\sqrt{44} \).

6) Simplify: \(\sqrt{200} - 3\sqrt{2} \)
7) Express the sum of \(\sqrt{18} + 5\sqrt{2} \) in simplest radical form.

8) \(5\sqrt{3} + \sqrt{27} \)
9) \(5\sqrt{3} + 2\sqrt{3} - 6\sqrt{3} \)

10) Find the **perimeter** of a rectangle whose length is \(4\sqrt{5} \) and width is \(3\sqrt{7} \).
 [Draw a picture!]
Adding/Subtracting Radicals continued

1) $\sqrt{3} + 2\sqrt{3}$

2) $\sqrt{18} + \sqrt{24}$

Sometimes we need to simplify more that one radical in order to be able to add or subtract them.

Example 1:

$\sqrt{18} + \sqrt{32}$

$\sqrt{9} \sqrt{2} + \sqrt{16} \sqrt{2}$

$3 \sqrt{2} + 4 \sqrt{2}$ We have the same radicands so we can perform addition!

Example 2:

$\sqrt{48} - \sqrt{27}$

Example 3:

$2\sqrt{80} + \sqrt{45}$

We need to simplify both terms to see if we have the same radicands!!

Let’s do some example that might *not* have the same radicands in the end.

Example 4:

$\sqrt{32} - \sqrt{54}$

Example 5:

$\sqrt{72} + 3\sqrt{20}$
More Examples:

1. \(\sqrt{12} + \sqrt{108}\)
2. \(-\sqrt{24} - \sqrt{96}\)
3. \(2\sqrt{8} + \sqrt{27}\)

Practice:
Simplify the following expressions.

1. \(9\sqrt{50}\)
2. \(\sqrt{28} + \sqrt{63}\)
3. \(4\sqrt{14} - 6\sqrt{14}\)

4. \(\sqrt{7} + \sqrt{175}\)
5. \(\frac{1}{2}\sqrt{40}\)
6. \(\sqrt{80} - \sqrt{20}\)

7. \(\sqrt{27} + \sqrt{32}\)
8. \(4\sqrt{22}\)
1. $\sqrt{18} + \sqrt{50}$
2. $-\sqrt{80} - \sqrt{45}$
3. $-\sqrt{8} + \sqrt{32}$

4. $11\sqrt{45}$
5. $\sqrt{50} + \sqrt{98}$
6. $9\sqrt{7} + 6\sqrt{7}$

7. $\sqrt{5} + \sqrt{125}$
8. $\frac{1}{4}\sqrt{32}$
9. $\sqrt{24} - \sqrt{54}$

10. $\sqrt{32} + \sqrt{75}$
11. $-8\sqrt{13}$

12. Find the **perimeter** of a rectangle whose length is $3\sqrt{10}$ and width is $4\sqrt{2}$.
[Draw a picture!]